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Abstract 
This deliverable constitutes a comprehensive survey of the literature on mitigating algorithmic bias. 
It represents the synthesis of all the work carried out in WP3. The survey develops a conceptual 
framework for understanding the problem and solution spaces of algorithmic bias, as well as the roles 
of various stakeholders. The manuscript was prepared as a submission to the journal ACM 
Computing Surveys. 
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1. Executive Summary 
 

D3.4 is a survey paper detailing our understanding of the state-of-the-art in the emerging field 
of Mitigating Bias in Algorithmic Systems, based on 12 months of intensive, collaborative work 
with the existing published literature. Mitigating bias in algorithmic systems is a critical issue 
drawing attention across communities within the information and computer sciences. Given the 
complexity of the problem and the involvement of multiple stakeholders – including 
developers, end-users and third-parties – there is a need to understand the landscape of the 
sources of bias, and the solutions being proposed to address them. This deliverable provides a 
“fish-eye view” examining approaches across four areas of research: machine learning (ML), 
human-computer interaction (HCI), recommender systems (RecSys), and information retrieval 
(IR).  
 
The literature describes three steps toward a comprehensive treatment – bias detection, fairness 
and explainability management – and underscores the need to work from within the system as 
well as from the perspective of stakeholders in the broader context. The survey aims to help 
the reader achieve a high-level understanding of the current state of bias in algorithmic systems 
across the four domains and to describe opportunities for cross-fertilization between 
communities. It presents a fish-eye view of the literature surrounding algorithmic bias, its 
problem and solution spaces in order the user to maintain perspective of the “big picture”, but 
can still choose when to drill down into further details. 

 
 

2. Problem Space 
 

Fig. 1 provides a general characterization of an algorithmic system, with its macro components, 
which we have used to examine the problem space of algorithmic bias. In this generic 
architecture, the system receives input (I) for an instance of its operation. This is provided by 
a user (U), or another source (e.g., the result of an automated process). The algorithmic model 
(M) makes some computation(s) based on the inputs and produces an output (O). The model 
learns from a set of observations of data (D) from the problem domain. It may also receive 
constraints from third-party actors (T) and/or internal fairness criteria (F) which modify the 
operation of the algorithmic model (M). Finally, some systems have direct interaction with a 
user (U) who, as previously discussed, will bring her own knowledge, background and attitude 
when interpreting the system’s output.  
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Fig. 1: Generic architecture of an algorithmic system 

 

Thus, bias may manifest and/or be detected in one or more of these components: 

• Input (I) - Bias may be introduced in the input data, e.g., as incorrect or incomplete 
information input by the user. 

• Output (O) - Bias may be detected at the outcome (value(s)/label(s)) produced in response 
to the input. 

• Algorithm (M) - Bias can manifest during the model’s processing and learning. 
• Training Data (D) - Training data may be inaccurate, imbalanced, and/or 

unrepresentative. Furthermore, it may contain information about sensitive attributes of 
people. 

• Third Party Constraints (T) – Implicit and explicit constraints, given by third parties, may 
impact the design and performance of the algorithm and cause discrimination and fairness 
issues. These include operators of the system, regulators and other bodies that influence 
the use and outcomes of the system. 

• Fairness Constraints (F) – Fairness constraints may be introduced within the system, such 
that one interpretation of fairness is prioritized over others. 

• User (U) – When users interact directly with a system, they may contribute to bias in a 
number of ways, such as through the inappropriate use of the system or misinterpretation 
of the system’s output.  

The problematic components and/or points at which bias can be detected are also shown in Fig. 2, 
which groups them into four main types: data bias, user bias, processing bias, and human bias. In 
reality, all biases are at least indirectly human biases; for instance, datasets and processing 
techniques are created by humans. However, we believe that it is helpful to distinguish the biases 
that are directly introduced into the system by humans, such as third-party biases, those resulting 
from conflicting fairness. 
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Fig. 2: Observers’ fish-eye view of mitigating algorithmic bias: problems, stakeholders, solutions 

 

3. Solution Space 
 

The literature suggests that a comprehensive solution for mitigating algorithmic bias consists 
of three main steps:  

• Detection of Bias: This involves scrutinizing the system to detect any type of systematic 
bias. The two main approaches for detecting bias in an algorithmic system, which are 
described in the literature are: Auditing and direct/indirect Discrimination discovery. As 
Table 1 shows, in machine learning systems, discrimination detection is mostly done by 
implicit/explicit discrimination discovery methods which include measuring 
discrimination or using a causal Bayesian network. Auditing in ML systems is mostly done 
by a black-box auditing software tool or when auditors search for any bias through the 
dataset. In IR, HCI and RecSys systems, users mostly act as auditors by submitting 
different queries in search engines and social networks or by taking the role of 
crowdworker in the crowdsourcing conducted studies. 
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Table 1: Summary of the problem and bias detection solution space per domain 

 

• Fairness Management: includes the techniques developers use to mitigate the detected 
bias and certify that the system is fairness-aware. Fairness management approaches can be 
classified into: Fairness sampling (or pre-processing), Fairness learning (or in-processing) 
and Fairness certification (or post-processing methods).  Pre-processing methods handle 
bias in input data, in-processing methods concern the mitigation of bias in the algorithm 
and post-processing methods concern the elimination of bias in the outcome. As displayed 
in Table 2, in machine learning algorithmic systems, data mining techniques are used to 
mitigate bias either in the data, in the model processing or at the outcome decision. User-
focus systems such as information retrieval, recommender systems and human-computer 
interface systems use mostly pre-processing approaches such as fairness sampling and 
feature selection to handle bias in data.  
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Table 2: Summary of the problem and fairness management solution space per domain 

 

• Explainability Management: is applied to the system to facilitate transparency and to 
build trust between Observers/Users and the system. Explainability approaches have 
primarily been developed in the context of ML algorithms and systems. However, there is 
a growing literature within the HCI and IR communities. These works suggest that 
explainability and judgement of the outcome or decision of the system should be provided 
in order to enhance the trust of the end user in the system. As displayed in Table 3, in ML 
systems, the explainability method is usually based on the algorithm used in the system, 
considering whether it is an interpretable algorithm (white-box) or a black-box model such 
as deep learning. The explainability approaches also concern either the explainability of 
how the algorithm works or of the algorithm’s outcome. There are also the model-agnostic 
explanation approaches that explain the output of any classifier, regardless of the machine 
learning algorithm used to train it. Finally, explainability approaches have also been widely 
discussed in recommender systems. The difference between these approaches and the ones 
used in ML are that they take into consideration the user’s perception and specific goal of 
increasing the trust of the end-user in the system. In RecSys literature, various explanation 
styles have been reviewed according to the purpose of providing explanations in a 
recommender system e.g., transparency, scrutability, trust, etc. 
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Table 3: Summary of the problem and explainability management solution space per domain 

 

4. Conclusion 
 

We provided a “fish-eye view" of research to date on the mitigation of bias in any type of 
algorithmic system. With the aim of raising awareness of biases in user-focused, and 
algorithmic-focus systems, we examined studies conducted in four different research 
communities: information retrieval (IR), human-computer interaction (HCI), recommender 
systems (RecSys) and machine learning (ML). We outlined a classification of the solutions 
described in the literature for detecting bias as well as for mitigating the risk of bias and 
managing fairness in the system. Multiple stakeholders, including the developer (or anyone 
involved in the pipeline of a system’s development), and various system observers (i.e., 
stakeholders who are not involved in the development, but who may use, be affected by, 
oversee, or even regulate the use of the system) are involved in mitigating bias. A Venn diagram 
(Fig. 3) shows the potential for cross-fertilization among the four research communities that 
we reviewed, in terms of realizing comprehensive solutions for mitigating bias. The 
interrelationship between the communities is primarily based on the stakeholders involved in 
implementing each solution.  

 

 

 

 

 

 

 

 

 

Fig 3: Venn diagram:  Cross-fertilization between the four domains 
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