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Abstract 

This deliverable constitutes a comprehensive survey of the literature on mitigating algorithmic bias. 

It represents the synthesis of all the work carried out in WP3. The survey develops a conceptual 

framework for understanding the problem and solution spaces of algorithmic bias, as well as the roles 

of various stakeholders. The manuscript was prepared as a submission to the journal ACM 

Computing Surveys. 

Keyword(s): 
Algorithmic bias, ACM Computing Surveys, conceptual framework, literature 

review 

 

  



CyCAT - Twinning Project                                                                                    Project no:810105 

 

 
  

Contents 

1. Executive Summary 5 

2. Affected Attributes 5 

3. Problem Space 6 

4. Solution Space 8 

5. Conclusion 11 

6. References 12 

 

   



CyCAT - Twinning Project                                                                                    Project no:810105 

 

 
  

1. Executive Summary 
 

D3.4 is a survey paper detailed our understanding of the state-of-the-art in the emerging field 

of Mitigating Bias in Algorithmic Systems, based on 12 months of intensive, collaborative work 

with the existing published literature. Mitigating bias in algorithmic systems is a critical issue 

drawing attention across communities within the information and computer sciences. Given the 

complexity of the problem and the involvement of multiple stakeholders – including 

developers, end-users and third-parties – there is a need to understand the landscape of the 

sources of bias, and the solutions being proposed to address them. This deliverable provides a 

“fish-eye view” examining approaches across four areas of research: machine learning (ML), 

human-computer interaction (HCI), recommender systems (RecSys), and information retrieval 

(IR).  

 

The literature describes three steps toward a comprehensive treatment – bias detection, fairness 

and explainability management – and underscores the need to work from within the system as 

well as from the perspective of stakeholders in the broader context. The survey aims to help 

the reader achieve a high-level understanding of the current state of bias in algorithmic systems 

across the four domains and to describe opportunities for cross-fertilization between 

communities. It presents a fish-eye view of the literature surrounding algorithmic bias, its 

problem and solution spaces in order the user to maintain perspective of the “big picture”, but 

can still choose when to drill down into further details. 

 

 

2. Affected Attributes 
 

 

 
Fig. 1: Affected attributes in the surveyed articles 
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We also characterized, for a given article, the attribute(s) affected by the problematic system 

behavior. While early technical works often discussed generic sensitive attributes [108], we 

recorded the specific attribute of interest in the respective research. Thus, we follow the more 

recent work in socio-technical systems that considers how specific dimensions, such as the 

social, cultural, and political attributes of the content or person being processed, may be 

affected by algorithmic behaviors.  Fig. 1 analyzes the frequency with which specific attributes 

were examined in the literature we surveyed, across the respective domains. In particular, the 

chart presents the proportion of articles within a given domain that discussed each attribute. As 

can be observed, across all articles, we find 10 attributes described; note that some researchers 

describe more/less specific attributes (e.g. demographics or sensitive attribute vs. gender, race 

or natural origin). Frequencies across the entire corpus are detailed on the horizontal axis. 

Information is the most frequently studied attribute in our corpus, and is the primary dimension 

addressed in the ML literature. For instance, in the explainability literature, a primary concern 

is the extent to which information is effectively conveyed to the user. Likewise, IR articles 

often consider information as the affected dimension under study; here, the classic example is 

the large body of work on search engine biases. In contrast, the literature in HCI and RecSys 

do not often address information as an affected dimension. In these fields, articles on mitigating 

algorithmic biases more often consider social and cultural dimensions, such as demographics 

(generally), gender, and race, with a few studies on attributes such as age, language and 

physical attractiveness also emerging. 

 

3. Problem Space 
 

Fig. 2 provides a general characterization of an algorithmic system, with its macro components, 

which we have used to examine the problem space of algorithmic bias. In this generic 

architecture, the system receives input (I) for an instance of its operation. This is provided by 

a user (U), or another source (e.g., the result of an automated process). The algorithmic model 

(M) makes some computation(s) based on the inputs and produces an output (O). The model 

learns from a set of observations of data (D) from the problem domain. It may also receive 

constraints from third-party actors (T) and/or internal fairness criteria (F) which modify the 

operation of the algorithmic model (M). Finally, some systems have direct interaction with a 

user (U) who, as previously discussed, will bring her own knowledge, background and attitude 

when interpreting the system’s output.  
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Fig. 2: Generic architecture of an algorithmic system 

 

Thus, bias may manifest and/or be detected in one or more of these components: 

 Input (I) - Bias may be introduced in the input data, e.g., as incorrect or incomplete 

information input by the user. 

 Output (O) - Bias may be detected at the outcome (value(s)/label(s)) produced in response 

to the input. 

 Algorithm (M) - Bias can manifest during the model’s processing and learning. 

 Training Data (D) - Training data may be inaccurate, imbalanced, and/or 

unrepresentative. Furthermore, it may contain information about sensitive attributes of 

people. 

 Third Party Constraints (T) - Implicit and explicit constraints, given by third parties, may 

impact the design and performance of the algorithm and cause discrimination and fairness 

issues. These include operators of the system, regulators, and other bodies which 

influence the use and outcomes of the system. 

 Fairness Constraints (F) - Fairness constraints may be introduced within the system, such 

that one interpretation of fairness is prioritized over others [77]. 

 User (U) - When users interact directly with a system, they may contribute to bias in a 

number of ways, such as through the inappropriate use of the system or misinterpretation 

of system output. 
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4. Solution Space 
 

 

Fig. 3: The solution space for mitigating bias 

The literature suggests that a comprehensive solution for mitigating algorithmic bias consists 

of three main steps (Fig. 3):  

• Detection of Bias: This involves scrutinizing the system to detect any type of systematic 

bias. The two main approaches for detecting bias in an algorithmic system, which are 

described in the literature are: Auditing and direct/indirect Discrimination discovery. As 

Table 1 shows, in machine learning systems, discrimination detection is mostly done by 

implicit/explicit discrimination discovery methods which include measuring 

discrimination or using a causal Bayesian network. Auditing in ML systems is mostly done 

by a black-box auditing software tool or when auditors search for any bias through the 

dataset. In IR, HCI and RecSys systems, users mostly act as auditors by submitting 

different queries in search engines and social networks or by taking the role of 

crowdworker in the crowdsourcing conducted studies. 
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Table 1: Summary of the problem and bias detection solution space per domain 

 

 Fairness Management: includes the techniques developers use to mitigate the detected 

bias and certify that the system is fairness-aware. Fairness management approaches can be 

classified into: Fairness sampling (or pre-processing), Fairness learning (or in-processing) 

and Fairness certification (or post-processing methods).  Pre-processing methods handle 

bias in input data, in-processing methods concern the mitigation of bias in the algorithm 

and post-processing methods concern the elimination of bias in the outcome. As displayed 

in Table 2, in machine learning algorithmic systems, data mining techniques are used to 

mitigate bias either in the data, in the model processing or at the outcome decision. User-

focus systems such as information retrieval, recommender systems and human-computer 

interface systems use mostly pre-processing approaches such as fairness sampling and 

feature selection to handle bias in data.  
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Table 2: Summary of the problem and fairness management solution space per domain 

 

 Explainability Management: is applied to the system to facilitate transparency and to 

build trust between Observers/Users and the system. Explainability approaches have 

primarily been developed in the context of ML algorithms and systems. However, there is 

a growing literature within the HCI and IR communities. These works suggest that 

explainability and judgement of the outcome or decision of the system should be provided 

in order to enhance the trust of the end user in the system. As displayed in Table 3, in ML 

systems, the explainability method is usually based on the algorithm used in the system, 

considering whether it is an interpretable algorithm (white-box) or a black-box model such 

as deep learning. The explainability approaches also concern either the explainability of 

how the algorithm works or of the algorithm’s outcome. There are also the model-agnostic 

explanation approaches that explain the output of any classifier, regardless of the machine 

learning algorithm used to train it. Finally, explainability approaches have also been widely 

discussed in recommender systems. The difference between these approaches and the ones 

used in ML are that they take into consideration the user’s perception and specific goal of 

increasing the trust of the end-user in the system. In RecSys literature, various explanation 

styles have been reviewed according to the purpose of providing explanations in a 

recommender system e.g., transparency, scrutability, trust, etc. 
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Table 3: Summary of the problem and explainability management solution space per domain 

 

5. Conclusion 
 

We provided a “fish-eye view" of research to date on the mitigation of bias in any type of 

algorithmic system. With the aim of raising awareness of biases in user-focused, and 

algorithmic-focus systems, we examined studies conducted in four different research 

communities: information retrieval (IR), human-computer interaction (HCI), recommender 

systems (RecSys) and machine learning (ML). We outlined a classification of the solutions 

described in the literature for detecting bias as well as for mitigating the risk of bias and 

managing fairness in the system. Multiple stakeholders, including the developer (or anyone 

involved in the pipeline of a system’s development), and various system observers (i.e., 

stakeholders who are not involved in the development, but who may use, be affected by, 

oversee, or even regulate the use of the system) are involved in mitigating bias.  

 

Fig. 4 summarizes at a high-level, the problems, solutions and stakeholders involved in 

mitigating algorithmic bias. Basically, the Developers, as the only stakeholders with full access 

to the interworking of the system, they are the only ones who can be involved in all three steps: 

detection of bias, fairness management, and explainabiity management. On the other hand, 

Observers and Users are more limited in their access to the system’s interworkings. Therefore, 

in terms of detecting bias, they are typically involved in auditing the system. Explainability 

management is positioned between the inside of the system and the user interface. Therefore, 

it plays a very important role in winning the user’s trust in the system. Finally, Fairness 

Perception, which is somehow related to both fairness management and explainability 

management, is not yet depicted in this figure, and is food for our future research.  
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Fig. 4: High-level summary of the problems, solutions and stakeholders involved in mitigating bias in 

algorithmic systems. 
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